Rule Based Machine Translation vs. Statistical Machine Translation
To process any translation, human or automated, the meaning of a text in the original (source) language must be fully restored in the target language, i.e. the translation. While on the surface this seems straightforward, it is far more complex. Translation is not a mere word-for-word substitution. A translator must interpret and analyze all of the elements in the text and know how each word may influence another. This requires extensive expertise in grammar, syntax (sentence structure), semantics (meanings), etc., in the source and target languages, as well as familiarity with each local region.
Human and machine translation each have their share of challenges. For example, no two individual translators can produce identical translations of the same text in the same language pair, and it may take several rounds of revisions to meet customer satisfaction. But the greater challenge lies in how machine translation can produce publishable quality translations.
Rule-Based Machine Translation Technology
Rule-based machine translation relies on countless built-in linguistic rules and millions of bilingual dictionaries for each language pair.
The software parses text and creates a transitional representation from which the text in the target language is generated. This process requires extensive lexicons with morphological, syntactic, and semantic information, and large sets of rules. The software uses these complex rule sets and then transfers the grammatical structure of the source language into the target language.
Translations are built on gigantic dictionaries and sophisticated linguistic rules. Users can improve the out-of-the-box translation quality by adding their terminology into the translation process. They create user-defined dictionaries which override the system’s default settings.
In most cases, there are two steps: an initial investment that significantly increases the quality at a limited cost, and an ongoing investment to increase quality incrementally. While rule-based MT brings companies to the quality threshold and beyond, the quality improvement process may be long and expensive.
Statistical Machine Translation Technology
Statistical machine translation utilizes statistical translation models whose parameters stem from the analysis of monolingual and bilingual corpora. Building statistical translation models is a quick process, but the technology relies heavily on existing multilingual corpora. A minimum of 2 million words for a specific domain and even more for general language are required. Theoretically it is possible to reach the quality threshold but most companies do not have such large amounts of existing multilingual corpora to build the necessary translation models. Additionally, statistical machine translation is CPU intensive and requires an extensive hardware configuration to run translation models for average performance levels.
Rule-Based MT vs. Statistical MT
Rule-based MT provides good out-of-domain quality and is by nature predictable. Dictionary-based customization guarantees improved quality and compliance with corporate terminology. But translation results may lack the fluency readers expect. In terms of investment, the customization cycle needed to reach the quality threshold can be long and costly. The performance is high even on standard hardware.
Statistical MT provides good quality when large and qualified corpora are available. The translation is fluent, meaning it reads well and therefore meets user expectations. However, the translation is neither predictable nor consistent. Training from good corpora is automated and cheaper. But training on general language corpora, meaning text other than the specified domain, is poor. Furthermore, statistical MT requires significant hardware to build and manage large translation models.
Rule-Based MT | Statistical MT |
---|---|
+ Consistent and predictable quality | – Unpredictable translation quality |
+ Out-of-domain translation quality | – Poor out-of-domain quality |
+ Knows grammatical rules | – Does not know grammar |
+ High performance and robustness | – High CPU and disk space requirements |
+ Consistency between versions | – Inconsistency between versions |
– Lack of fluency | + Good fluency |
– Hard to handle exceptions to rules | + Good for catching exceptions to rules |
– High development and customization costs | + Rapid and cost-effective development costs |
Given the overall requirements, there is a clear need for a third approach through which users would reach better translation quality and high performance (similar to rule-based MT), with less investment (similar to statistical MT).